
LBA classic engine doc

[2.21]

Jul 31, 2023

LBA1

1 General information 3

2 Other VERY useful resources 5

3 LBA1 engine 7
3.1 Compile . 7
3.2 Compile . 9
3.3 Audio . 11

4 LBA2 engine 13
4.1 Compile . 13
4.2 Audio . 13
4.3 Scripts . 13
4.4 Zones . 21

i

ii

LBA classic engine doc

This documentation aim to explain how the Little Big Adventure engines work.

Please Little Big Adventure game assets (art, models, textures, audio, etc.) are not open-source and therefore aren’t
redistributable.

LBA1 1

LBA classic engine doc

2 LBA1

CHAPTER

ONE

GENERAL INFORMATION

This documentation is hosted by Read the docs and built with Sphinx. You can pull the project and edit locally.

The files from the engines are encoded in OEM-852 or Code page 852 : https://en.wikipedia.org/wiki/Code_page_852

3

https://docs.readthedocs.io/en/stable/index.html
https://www.sphinx-doc.org/en/master/index.html
https://en.wikipedia.org/wiki/Code_page_852

LBA classic engine doc

4 Chapter 1. General information

CHAPTER

TWO

OTHER VERY USEFUL RESOURCES

LBA Community Wiki : http://lbafileinfo.kaziq.net/index.php/Main_Page

5

http://lbafileinfo.kaziq.net/index.php/Main_Page

LBA classic engine doc

6 Chapter 2. Other VERY useful resources

CHAPTER

THREE

LBA1 ENGINE

3.1 Compile

3.1.1 Prerequisites

• DOSBox - DOS emulator which we will use to compile the game inside.

• 4DOS - Command line interpreter, which supports the copy command with binary inputs and output.

• Watcom 10 compiler - For compiling C sources and running MAKEFILEs

• MASM (Microsoft Macro Assembler) 6.0 - For compiling ASM sources

3.1.2 Getting prerequisites and sources

DOSBox and 4DOS are freely available. For getting Watcom 10 and MASM 6.0, you need to search the internet. Note
that we did not manage to build the game with Open Watcom. Also, for some reason the MASM version 6.11 compiler
did run very slowly in the DOSBox, so it was basically unusable. We had to use the version 6.0.

All directories and files will placed in the ~/lba-hacking directory on the host machine. Feel free to change this path,
but then adjust the DOSBox configuration below correspondingly. This directory will be mounted to C: in DOSBox.

• Extract 4DOS into 4dos.

• Extract Watcom and MASM installers into install. These will be needed to be installed.

• Clone https://github.com/2point21/lba1-classic-community into lba.

The dir structure at this point should like something like this:

~/lba-hacking
4dos
install

masm
watcom

lba

7

https://www.dosbox.com/
https://www.4dos.info/v4dos.htm#751
https://github.com/2point21/lba1-classic-community

LBA classic engine doc

3.1.3 DOSBox configuration

Change the autoexec section of you DOSBox configuration like below. The configuration path of DOSBox is usually
shown when you start it.

[autoexec]
mount C ~/lba-hacking

PATH c:\watcom\binw;c:\masm\bin;%PATH%
set INCLUDE=c:\watcom\h;c:\lba\lib386
set WATCOM=c:\watcom
set EDPATH=c:\watcom\eddat
set WIPFC=c:\watcom\wipfc

C:
C:\4DOS\4DOS.COM

3.1.4 Install tools

• Launch DOSBox (e.g. with dosbox).

• On the first run, 4DOS will prompt some configuration values.

• Install Watcom by running C:\INSTALL\WATCOM\SETUP.EXE and following the instructions. Leave the de-
fault installation path C:\WATCOM. The step which proposes to modify AUTOEXEC.EXE and CONFIG.SYS can be
skipped.

• Install MASM by running C:\INSTALL\MASM\DISK1\SETUP.EXE. Leave the default installation paths C:\
MASM\BINB, etc. . .

Check the installation by typing in:

• wmake: this should show the installed Watcom make version; in my case 10.5

• wcc386: this should show the help of the Watcom C compiler; in my case 10.5

• ml: this should show the version of the Microsoft Macro Assembler; in my case 6.00

Now we are ready to build the game.

3.1.5 Build

Run inside the DOSBox

cd C:\LBA\LIB386

cd LIB_3D
wmake

cd ..\LIB_MENU
wmake

cd ..\LIB_MIDI
wmake

(continues on next page)

8 Chapter 3. LBA1 engine

LBA classic engine doc

(continued from previous page)

cd ..\LIB_MIX
wmake

cd ..\LIB_SAMP
wmake

cd ..\LIB_SVGA
wmake

cd ..\LIB_SYS
wmake

cd ..\..\SOURCES
wmake
link

The last command will link the LBA0.exe.

3.1.6 Run

To run the game, you will need some assets of the original game.

• copy HQR files,

• copy M_SB16.DLL, S3.DLL, and W_SB16.DLL,

• copy LBA.CFG,

into the directory containing LBA0.exe, in our case C:\LBA\SOURCES.

Run

dos4gw LBA0.exe

Enjoy!

3.2 Compile

3.2.1 Prerequisites

• Open Watcom v2 - C/C++ Compiler capable of building DOS applications

• MASM (Microsoft Macro Assembler) - For compiling assembler files

3.2. Compile 9

https://github.com/open-watcom/open-watcom-v2

LBA classic engine doc

3.2.2 Getting prerequisites and sources

The prerequisites are freely available, MASM as part of Visual Studio Community (Tested with versions 2019 and
2022). Both can be installed at their default locations.

For Open Watcom, be sure to select full instalation and to modify environment variables later.

To get the sources, clone the lba1-classic-community repository into some folder.

git clone https://github.com/2point21/lba1-classic-community.git

3.2.3 Environment configuration

Create or edit the file SETENV.BAT on the lba1-classic-community repository folder, with the following content,
making sure to double check if the Microsoft Visual Studio Community and Open Watcom folders are the same on
your system.

@echo off
echo LBA Build Environment
call "C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\
→˓vcvarsamd64_x86.bat"
call C:\WATCOM\owsetenv.bat
SET LIB386_PATH=%CD%\LIB386
SET INCLUDE=%LIB386_PATH%;%INCLUDE%

3.2.4 Build

In a Windows command prompt inside the lba1-classic-community repository folder, run

cd LIB386\LIB_3D
wmake

cd ..\LIB_CD
wmake

cd ..\LIB_MENU
wmake

cd ..\LIB_MIDI
wmake

cd ..\LIB_MIX
wmake

cd ..\LIB_SAMP
wmake

cd ..\LIB_SVGA
wmake

cd ..\LIB_SYS
wmake

(continues on next page)

10 Chapter 3. LBA1 engine

https://visualstudio.microsoft.com/pt-br/vs/community/
https://github.com/2point21/lba1-classic-community

LBA classic engine doc

(continued from previous page)

cd ..\..\SOURCES
wmake
link

The expected output is the LBA0.exe executable inside the SOURCES folder.

3.2.5 Run

To run the game, you will need the original assets of the game and the LBA0.exe generated executable.

• copy game assets,

• copy LBA0.exe,

into the same directory. The compiled file was verified to run with DOSBox Staging.

3.2.6 Troubleshooting

Q: When I execute LBA0.exe, an error appears: “SVGA card BIOS does not support VESA extensions. Please refer to
your SVGA card documentation for installing VESA driver”. What can I do?

A: To solve this, change the SvgaDriver configuration in LBA.CFG to:

SvgaDriver: TSENG.DLL

Where TSENG.DLL is set instead of S3.DLL. If the issue persists, other drivers may be used (check LBA.CFG to see
which are available in the game assets). As of date, this was tested using Tseng.

Additionally, change the type of machine DOSBox tries to emulate. In the DOSBox configuration file, set the machine
value to:

[dosbox]
machine=svga_et4000

This will change the emulation of DOSBox to Tseng Labs ET4000. If you choose to use another SVGA driver, change
the machine value accordingly (check the DOSBox configuration file to see the available options).

3.3 Audio

3.3. Audio 11

https://dosbox-staging.github.io/

LBA classic engine doc

12 Chapter 3. LBA1 engine

CHAPTER

FOUR

LBA2 ENGINE

4.1 Compile

4.2 Audio

4.3 Scripts

4.3.1 Notation

Opcode fields:

char[] Embedded C-style (NUL-terminated) string.

cond One or more opcodes specifying a condition.

i16 16-bit signed value (little-endian) used for opcode arguments.

int_or_string Any of char[], i8, u8, i16. This is used in conditions, where the type is determined by the type of the
value that is being compared.

pc16 16-bit signed offset (little-endian) used as a jump destination, absolute.

pcrel16 16-bit signed offset (little-endian) used as a jump destination, relative to the current opcode.

u8 8-bit unsigned value used for opcode arguments.

u16 16-bit unsigned value (little-endian) used for opcode arguments.

u32 32-bit unsigned value (little-endian) used for opcode arguments.

4.3.2 Life scripts

Life scripts are broken down into “behaviours” (“comportement” in the source). Each time an actor’s life script is
executed, it executes the same behaviour as when it last exited (or the first behaviour if it is the first time running). This
way, each behaviour acts as a mini AI loop for the actor, with each tailored to a particular situation (e.g. idling, with
Twinsen nearby, in combat, interacting with an object, etc).

13

LBA classic engine doc

Life script operations

In the following table, you can see that there are a number of opcodes that have the same behaviour but different names.
This is useful when compiling or decompiling the scripts as there is a 1:1 correspondence between the written script
and the compiled bytecode.

Opcode (hex) Name/syntax Description
0x00 END Marks the end of this script.
0x01 NOP Does nothing.
0x02 SNIF cond pcrel16 Jumps always, then replaced with SWIF opcode if condition was true.
0x03 OFFSET pcrel16 Jumps always.
0x04 NEVERIF pcrel16 Jumps always. Used as a replacement for a ONEIF opcode.
0x0A PALETTE u8:palette Switches the game’s palette.
0x0B RETURN Ends the current behaviour.
0x0C IF cond pcrel16 Jumps if the condition is false.
0x0D SWIF cond pcrel16 Jumps if the condition is false and then replaced with SNIF.
0x0E ONEIF cond pcrel16 Jumps if the condition is false otherwise replaced with NEVERIF.
0x0F ELSE pcrel16 Jumps always.
0x10 ENDIF Does nothing.
0x11 BODY u8:model Changes the model of the actor.
0x12 BODY_OBJ u8:actor u8:model Changes the modem of another actor.
0x13 ANIM u16:animation Changes the animation of the actor.
0x14 ANIM_OBJ u8:actor u16:anim Changes the animation of another actor.
0x15 SET_CAMERA u8:zone u8:flag Enables or disables a camera zone.
0x16 CAMERA_CENTRE u8:angle_adjust Recentres camera.
0x17 SET_TRACK i16:track Changes this actor’s move script track.
0x18 SET_TRACK_OBJ u8:actor i16:track Changes another actor’s move script track.
0x19 MESSAGE i16:index Says a line of dialogue.
0x1A CAN_FALL u8:fall_type Sets whether actor can fall.
0x1B SET_DIRMODE u8:mode Sets this actor’s movement mode.
0x1C SET_DIRMODE_OBJ u8:actor u8:mode Sets another actor’s movement mode.
0x1D CAMERA_FOLLOW u8:actor Make camera follow an actor.
0x1E SET_HERO_STANCE u8:mode Set Twinsen’s stance.
0x1F SET_VAR_SCENE u8:var u8:value Sets the value of a scene variable.
0x20 BEHAVIOUR u8:id Begins a life script behaviour block.
0x21 SET_BEHAVIOUR pc16:offset Jumps to a new behaviour block.
0x22 SET_BEHAVIOR_OBJ u8:actor pc16:off Changes the active behaviour of another actor.
0x23 END_BEHAVIOUR Marks the end of a life script behaviour block.
0x24 SET_VAR_GAME u8:var i16:value Sets the value of a game variable.
0x25 KILL_OBJ u8:actor Kills the given actor.
0x26 SUICIDE Kills this actor.
0x27 USE_KEY Subtracts one key from the inventory.
0x28 SUB_MONEY i16:quantity Takes money from Twinsen.
0x29 END_LIFE Ends life script execution for this actor.
0x2A SAVE_CURRENT_TRACK Saves the move script track to a hidden variable.
0x2B RESTORE_LAST_TRACK Restores the move script track from the hidden variable.
0x2C MESSAGE_OBJ u8:actor i16:message Another actor says a line of dialogue.
0x2D INC_CHAPTER Increment the chapter number game variable.
0x2E FOUND_OBJECT u8:object Display the “found object” overlay.
0x2F SET_DOOR_LEFT i16:distance Slides this door to the left.
0x30 SET_DOOR_RIGHT i16:distance Slides this door to the right.

continues on next page

14 Chapter 4. LBA2 engine

LBA classic engine doc

Table 1 – continued from previous page
Opcode (hex) Name/syntax Description
0x31 SET_DOOR_UP i16:distance Slides this door upwards.
0x32 SET_DOOR_DOWN i16:distance Slides this door downwards.
0x33 GIVE_BONUS u8:remove Gives this actor’s bonus items.
0x34 CHANGE_SCENE u8:scene Move to a different scene.
0x35 OBJ_COL u8:enabled Enables or disables object/actor collisions for this actor.
0x36 BRICK_COL u8:collision_type Enables or disables terrain collisions for this actor.
0x37 OR_IF cond pcrel16 Jumps if condition is true.
0x38 INVISIBLE u8:invisible Makes the actor invisible or visible again.
0x39 SHADOW_OBJ u8:actor u8:enabled Enables or disables the shadow for another actor.
0x3A POS_POINT u8:point Moves this actor to a point.
0x3B SET_MAGIC_LEVEL u8:level Sets Twinsen’s magic level.
0x3C SUB_MANA u8:quantity Drains some of Twinsen’s mana.
0x3D SET_HEALTH_OBJ u8:actor u8:value Sets the health of an actor.
0x3E SUB_HEALTH_OBJ u8:actor u8:points Subtracts health from another actor.
0x3F HIT u8:victim u8:damage Deals damage to another actor, caused by this actor.
0x40 PLAY_VIDEO char[]:name Plays the named cutscene video.
0x41 LIGHTNING u8:duration Display a lightning flash.
0x42 INC_CLOVER_BOX Gives Twinsen another clover box.
0x43 SET_USED_INVENTORY u8:item Use inventory item.
0x44 ADD_CHOICE i16:message Adds choice to the next ask.
0x45 ASK_CHOICE i16:message Says a line of dialogue and offers choices.
0x46 INIT_BUGGY u8:flag Sets up Twinsen’s car.
0x47 MEMO_SLATE u8:picture Adds a picture to the memo slate.
0x48 SET_HOLO_POS u8:marker Adds a marker to the holomap.
0x49 CLR_HOLO_POS u8:marker Removes a marker from the holomap.
0x4A ADD_FUEL u8:ignored Does nothing (LBA1 leftover).
0x4B SUB_FUEL u8:ignored Does nothing (LBA1 leftover).
0x4C SET_FRAGMENT u8:zone u8:enable Enables or disables a terrain chunk.
0x4D SET_TELEPORT_ZONE u8:zone u8:flag Enables or disables a teleport zone.
0x4E MESSAGE_ZOE i16:message Says a line using Zoe’s voice.
0x4F FULL_POINT Restores Twinsen’s health, mana and healing horn.
0x50 BETA i16:angle Rotates actor.
0x51 FADE_TO_PAL u8:palette Fades to the given palette.
0x52 ACTION Triggers Twinsen’s action (like pressing the Z key).
0x53 SET_FRAME u8:frame Changes the frame number of this actor’s animation.
0x54 SET_SPRITE u8:sprite Changes the sprite used for this actor.
0x55 SET_FRAME_3DS u8:frame Changes the frame number of this actor’s animated sprite.
0x56 IMPACT_OBJ u8:actor i16:anim i16:yoffset Plays an impact animation above an actor.
0x57 IMPACT_POINT u8:point i16:anim Plays an impact animation at a point.
0x58 ADD_MESSAGE i16:message Same as MESSAGE.
0x59 BALLOON u8:enable Enables or disables use of speech balloons.
0x5A NO_HIT u8:enable Enables or disables ignoring hits/damage to this actor.
0x5B ASK_CHOICE u8:actor i16:message Another actor says a line of dialogue and offers choices.
0x5C CINEMA_MODE u8:enable Enables or disables cutscene mode.
0x5D SAVE_HERO Saves Twinsen’s stance to a hidden variable.
0x5E RESTORE_HERO Restores Twinsen’s stance from a hidden variable.
0x5F ANIM_SET u16:anim Sets this actor’s animation.
0x60 RAIN u8:duration Makes it rain.
0x61 GAME_OVER Kills Twinsen and ends the game.

continues on next page

4.3. Scripts 15

LBA classic engine doc

Table 1 – continued from previous page
Opcode (hex) Name/syntax Description
0x62 THE_END Ends the game and shows the credits.
0x63 SET_CONVEYOR_ZONE u8:zone u8:flag Enables or disables a conveyor zone.
0x64 PLAY_MUSIC u8:track Plays a music track.
0x65 SAVE_TRACK_TO_GAME_VAR u8:var Saves this actor’s move script track to a game variable.
0x66 SET_TRACK_FROM_GAME_VAR u8:var Sets this actor’s move script track from a game variable.
0x67 ANIM_TEXTURE u8:enable Enable or disable texture animation.
0x68 ADD_MESSAGE_OBJ u8:actor i16:msg Same as MESSAGE_OBJ.
0x69 BRUTAL_EXIT Ends the game without displaying the credits.
0x6A COMMENT Does nothing.
0x6B SET_LADDER_ZONE u8:zone u8:enable Enables or disables a ladder zone.
0x6C SET_ARMOUR u8:armour Sets this actor’s armour value.
0x6D SET_ARMOR_OBJ u8:actor u8:obj Sets the armour value of another actor.
0x6E ADD_HEALTH_OBJ u8:actor u8:life Adds health to another actor.
0x6F STATE_INVENTORY u8:item u8:state Changes the state/variant of an inventory object.
0x70 AND_IF cond pcrel16 Jumps if condition is false.
0x71 SWITCH Begins a switch statement.
0x72 OR_CASE pcrel16 cond Jumps if condition fails.
0x73 CASE pcrel16 cond Jumps if condition succeeds.
0x74 DEFAULT Does nothing.
0x75 BREAK pcrel16 Jumps to offset.
0x76 END_SWITCH Does nothing.
0x77 SET_SPIKE_ZONE u8:zone u8:damage Enables or disables a spike/trap zone.
0x78 SAVE_BEHAVIOUR Saves this actor’s behaviour index to a hidden variable.
0x79 RESTORE_BEHAVIOUR Restores this actor’s behaviour from the hidden variable.
0x7A SAMPLE i16:sample Plays a sound sample coming from this actor.
0x7B SAMPLE_RND i16:sample Like SAMPLE but randomly alters the sample’s frequency.
0x7C SAMPLE_ALWAYS i16:sample Like SAMPLE but plays the sample continuously.
0x7D SAMPLE_STOP i16:sample Stops the given sample if it is playing from this actor.
0x7E REPEAT_SAMPLE i16:sample u8:count Like SAMPLE but plays the given number of repeats.
0x7F BACKGROUND u8:flag Sets or clears the “background” (don’t redraw) flag for this actor.
0x80 ADD_VAR_GAME u8:var i16:value Adds a value to a game variable.
0x81 SUB_VAR_GAME u8:var i16:value Subtracts a value from a game variable.
0x82 ADD_VAR_SCENE u8:var u8:value Adds a value to a scene variable.
0x83 SUB_VAR_SCENE u8:var u8:value Subtracts a value from a scene variable.
0x84 NOP Does nothing.
0x85 SET_RAIL_ZONE u8:zone u8:enable Enables or disables a rail zone.
0x86 INVERSE_BETA Rotates the actor to face the opposite direction.
0x87 NO_BODY Hides the model for this actor.
0x88 ADD_MONEY i16:quantity Gives money to Twinsen.
0x89 SAVE_CURRENT_TRACK_OBJ u8:actor Saves the move script track of another actor to a hidden variable.
0x8A RESTORE_LAST_TRACK_OBJ u8:actor Restores the move script track of another actor from the hidden variable.
0x8B SAVE_BEHAVIOUR_OBJ u8:actor Saves the life script behaviour of another actor to a hidden variable.
0x8C RESTORE_BEHAVIOUR_OBJ u8:actor Restores the life script behaviour of another actor from the hidden variable.
0x8D SPY Does nothing.
0x8E DEBUG Does nothing.
0x8F DEBUG_OBJ Does nothing.
0x90 POPCORN Does nothing.
0x91 FLOW_POINT u8:point u8:flow Displays a particle animation at a point.
0x92 FLOW_OBJ u8:actor u8:flow Displays a particle animation on an actor.

continues on next page

16 Chapter 4. LBA2 engine

LBA classic engine doc

Table 1 – continued from previous page
Opcode (hex) Name/syntax Description
0x93 SET_ANIM_DIAL u16:anim Sets the animation to use when talking.
0x94 PCX u8:image Displays a still image.
0x95 END_MESSAGE Does nothing.
0x96 END_MESSAGE_OBJ u8:ignored Does nothing.
0x97 PARM_SAMPLE i16:freq u8:vol i16:fbase Configures audio sample parameters.
0x98 NEW_SAMPLE i16:sample i16:f u8:v i16:fb Plays an audio sample on this actor with custom parameters.
0x99 POS_OBJ_AROUND u8:move_actor u8:dest Positions an actor on or near another actor.
0x9A PCX_MESS_OBJ u8:img u8:fx u8:act i16:msg Show a message on a still image background.

Fall types (undocumented values are invalid):

0. actor cannot fall

1. actor can fall

2. actor can fall; stops any fall in progress

Movement modes (undocumented values are invalid):

0. no movement

1. controlled by player

2. follow actor (opcode has extra param: uint8: actor to follow)

3. invalid

4. invalid

5. invalid

6. same XZ position as other actor

7. MecaPenguin movement

8. rail cart movement

9. circle a point (opcode has extra param: uint8: point index)

10. circle a point while facing it (opcode has extra param: uint8: point index)

11. same XZ position and angle as other actor

12. car movement

13. car movement under player control

Hero stances (undocumented values are invalid):

0. normal

1. athletic

2. aggressive

3. discreet

4. protopack

5. walking with Zoe

6. healing horn

7. spacesuit normal (interior)

4.3. Scripts 17

LBA classic engine doc

8. jetpack

9. spacesuit athletic (interior)

10. spacesuit normal (exterior)

11. spacesuit athletic (exterior)

12. car

13. skeleton

Collision types (undocumented values are invalid):

0. can move through terrain bricks

1. blocked by terrain bricks

2. blocked by terrain bricks but can crawl through narrow passages

Buggy init types (undocumented values are invalid):

0. no init

1. init if needed

2. force init

Effects for PCX_MESS_OBJ (undocumented values are invalid):

0. no effect

1. venetian blinds effect

Life script conditions

Opcode (hex) Name/syntax Description
0x00 COL -> i8 Actor this actor collided with (or -1 if none).
0x01 COL_OBJ u8:actor -> i8 Actor another actor collided with (or -1 if none).
0x02 DISTANCE u8:actor -> i16 2D distance to another actor.
0x03 ZONE -> i8 Index of sceneric zone this actor is within (or -1 if none).
0x04 ZONE_OBJ u8:actor -> i8 Index of sceneric zone another actor is within (or -1 if none).
0x05 BODY -> i8 Model used for this actor.
0x06 BODY_OBJ u8:actor -> i8 Model used by another actor.
0x07 ANIM -> i16 Animation used by this actor.
0x08 ANIM_OBJ u8:actor -> i16 Animation used by another actor.
0x09 TRACK -> u8 Life script track active on this actor.
0x0A TRACK_OBJ u8:actor -> u8 Life script track active on another actor.
0x0B VAR_SCENE u8:var -> u8 Value of a scene variable.
0x0C CONE_VIEW u8:actor -> i16 Distance to another actor, if they are within a 90-degree view cone.
0x0D HIT_BY -> i8 Actor that last hit this actor.
0x0E ACTION -> i8 Action key was pressed.
0x0F VAR_GAME u8:var -> i16 Value of a game variable.
0x10 LIFE_POINT -> i16 Health of this actor.
0x11 LIFE_POINT_OBJ u8:actor -> i16 Health of another actor.
0x12 KEYS -> i8 Number of keys.
0x13 MONEY -> i16 Money.
0x14 HERO_STANCE -> i8 Twinsen’s stance.
0x15 CHAPTER -> i8 Game chapter.

continues on next page

18 Chapter 4. LBA2 engine

LBA classic engine doc

Table 2 – continued from previous page
Opcode (hex) Name/syntax Description
0x16 DISTANCE_3D u8:actor -> i16 3D distance to another actor.
0x17 MAGIC_LEVEL -> i8 Magic level.
0x18 MANA -> i8 Twinsen’s mana points.
0x19 ITEM_USED u8:item -> i8 Item being used.
0x1A CHOICE -> i16 Choice made in last dialogue.
0x1B FUEL -> i16 Returns junk value; do not used (lba1 leftover).
0x1C CARRY_BY -> i8 Actor carrying this actor.
0x1D CDROM -> i8 Whether this is the CDROM build or floppy build.
0x1E LADDER u8:zone -> i8 Whether a ladder zone is enabled.
0x1F RND u8:max -> u8 Random number.
0x20 RAIL u8:zone -> i8 Whether a rail zone is enabled.
0x21 BETA -> i16 Current angle of this actor.
0x22 BETA_OBJ u8:actor -> i16 Current angle of another actor.
0x23 CARRY_OBJ_BY u8:actor -> i8 Actor carrying another actor.
0x24 ANGLE u8:actor -> i16 Angle from this actor to another actor.
0x25 DISTANCE_MESSAGE u8:actor -> i16 Distance from another actor, if within an angle suitable for conversation.
0x26 HIT_OBJ_BY u8:actor -> i8 Actor that last hit another actor.
0x27 REAL_ANGLE u8:actor -> i16 Angle from this actor to another, clamped.
0x28 DEMO -> i8 Whether this is the demo build.
0x29 COL_BRICK -> i8 Whether this actor collides with scenery.
0x2A COL_BRICK_OBJ u8:actor -> i8 Whether another actor collides with scenery.
0x2B PROCESSOR -> i8 Whether running on an old processor.
0x2C OBJECT_DISPLAYED u8:actor -> i8 Whether this actor was drawn to the screen.
0x2D ANGLE_OBJ u8:actor -> i16 Angle from another actor to this actor.

Opcode
(hex)

Name/syntax Description

0x00 EQUAL int_or_string Whether the value is equal to the constant.
0x01 GREATER int_or_string Whether the value is greater than the constant. Not valid for

strings.
0x02 LESS int_or_string Whether the value is less than the constant. Not valid for

strings.
0x03 GREATER_OR_EQUAL

int_or_string
Whether the value is not less than the constant. Not valid for
strings.

0x04 LESS_OR_EQUAL int_or_string Whether the value is not greater than the constant. Not valid
for strings.

0x05 NOT_EQUAL int_or_string Whether the value is not equal to the constant.

4.3.3 Move scripts

Opcode (hex) Name/syntax Description
0x00 END Ends this move script.
0x01 NOP Does nothing.
0x02 BODY u8:model Sets this actor’s model.
0x03 ANIM u16:anim Sets this actor’s current animation.
0x04 GOTO_POINT u8:point Actor rotates to face the given point and waits until its animation takes it there.
0x05 WAIT_ANIM Waits for the current animation to end.

continues on next page

4.3. Scripts 19

LBA classic engine doc

Table 3 – continued from previous page
Opcode (hex) Name/syntax Description
0x06 LOOP u8:init u8:remaining pcrel16 Decrements remaining, jumps if non-zero, sets remaining to init if zero.
0x07 ANGLE i16:angle Actor rotates to the given angle and waits until the rotation completes.
0x08 POS_POINT u8:point Instantly teleports the actor to a point.
0x09 MOVE_TRACK u8:id Begins a track block within this move script.
0x0A GOTO pcrel16 Jumps to another part of the move script.
0x0B STOP Stops executing this move script.
0x0C GOTO_POINT_BACKWARDS u8:point Actor rotates to face away from the given point and waits until its animation takes it there.
0x0D WAIT_NUM_ANIM u8:count u8:zero Waits for the actor’s animation to have played a number of times.
0x0E SAMPLE i16:sample Plays a sound sample.
0x0F GOTO_POINT_3D u8:point Actor moves to the given point, if it’s a 3D sprite.
0x10 SPEED i16:speed Sets the rotation speed of the actor.
0x11 BACKGROUND u8:enabled Enables or disables the “background” flag for this actor.
0x12 WAIT_NUM_SECOND u8:count u32:zero Wait for the number of seconds.
0x13 NO_BODY Sets this actor to have no model.
0x14 BETA i16:angle Rotates this actor instantly.
0x15 OPEN_LEFT i16:distance Door slides to the left.
0x16 OPEN_RIGHT i16:distance Door slides to the right.
0x17 OPEN_UP i16:distance Door slides upwards.
0x18 OPEN_DOWN i16:distance Door slides downwards.
0x19 CLOSE Restore door’s original position.
0x1A WAIT_DOOR Wait until door finishes moving.
0x1B SAMPLE_RND i16:sample Plays a sound sample with a random frequency adjustment.
0x1C SAMPLE_ALWAYS i16:sample Plays a sound sample forever.
0x1D SAMPLE_STOP i16:sample Stops a particular sound sample.
0x1E PLAY_VIDEO char[]:name Plays a cutscene video.
0x1F REPEAT_SAMPLE i16:count Sets the number of repeats for SIMPLE_SAMPLE.
0x20 SIMPLE_SAMPLE i16:sample Plays a sample according to REPEAT_SAMPLE and resets the repeat count to 1.
0x21 FACE_HERO i16:negative_one Actor rotates to face Twinsen and waits until the rotation completes.
0x22 ANGLE_RND i16:angle i16:negative_one Actor rotates to a random angle and waits until the rotation completes.
0x23 COMMENT Does nothing.
0x24 WAIT_NUM_DECISECONDS u8:count u32:zero Waits for a number of deciseconds (tenths of a second).
0x25 DO Does nothing.
0x26 SPRITE i16:sprite Sets this actor’s sprite.
0x27 WAIT_NUM_SECOND_RND u8:max u32:zero Waits for a random number of seconds, up to a maximum.
0x28 AFF_TIMER Does nothing.
0x29 SET_FRAME u8:frame Sets the actor’s animation frame.
0x2A SET_FRAME_3DS u8:frame Sets the actor’s 3D sprite animation frame.
0x2B SET_START_3DS u8:frame Sets the start frame of the actor’s 3D sprite animation.
0x2C SET_END_3DS u8:frame Sets the end frame of the actor’s 3D sprite animation.
0x2D START_ANIM_3DS u8:fps Starts the actor’s 3D sprite animation.
0x2E STOP_ANIM_3DS Stops the actor’s 3D sprite animation.
0x2F WAIT_ANIM_3DS Waits until the actor’s 3D sprite animation ends or is stopped.
0x30 WAIT_FRAME_3DS u8:frame Waits until the actor’s 3D sprite animation reaches the given frame.
0x31 WAIT_NUM_DECISECONDS_RND u8:max u32:0 Waits for a random number of deciseconds, up to a maximum.
0x32 INTERVAL int16:interval Sets the interval between sample repeats.
0x33 FREQUENCY i16:frequency Sets the frequency for sample playback.
0x34 VOLUME u8:volume Sets the volume for sample playback.

20 Chapter 4. LBA2 engine

LBA classic engine doc

4.4 Zones

Zones are used to demarcate 3D regions of space within scenes. There are various types of zones, each of which have
different behaviours when Twinsen enters or interacts with them:

• teleport zones transport Twinsen to a different scene when entered

• camera zones change the camera position and angle when entered

• sceneric zones define areas of the scene used for “is actor in zone?” queries in scripts

• fragment zones define an area of the scene’s terrain that can be dynamically shown or hidden

• bonus zones dispense items when interacted with

• text zones are used to implement signs and say dialogue when interacted with

• ladder zones provide vertical movement

• conveyor zones move actors which stand within them

• spike zones deal damaged when entered (floor spikes, traps, etc)

• rail zones are used to control minecart movement

All zones are cuboid in shape.

4.4.1 Zone format

Zones are stored as part of the scene containing the zone:

Listing 1: zone data layout

{
i32 x0
i32 y0
i32 z0
i32 x1
i32 y1
i32 z1
i32 info0
i32 info1
i32 info2
i32 info3
i32 info4
i32 info5
i32 info6
i32 info7
i16 type
i16 value

}

• x0, y0, z0: first corner defining the zone cuboid

• x1, y1, z1: opposite corner defining the zone cuboid

• info0..7: zone parameters; interpretation depends on the zone type

• type: the type of zone

4.4. Zones 21

LBA classic engine doc

• value: zone parameter; interpretation depends on the zone type

Zone type Name
0 Teleport
1 Camera
2 Sceneric
3 Fragment
4 Bonus
5 Text
6 Ladder
7 Conveyor
8 Spike
9 Rail

The documentation below for each of the zone types describes how the flags are interpreted, as loaded from the scene.
The LBA engine modifies some of these values at run-time in order to avoid allocating additional memory; these
run-time uses and modifications are not documented here.

Teleport zones

Parameter Description
param Destination scene
info0 Destination x
info1 Destination y
info2 Destination z
info3 Destination angle
info4 Zone scripting ID
info5 Door flags: bit 0 - for exterior scenes, don’t activate zone until Twinsen collides with the door
info6 Collision flags: bit 0 - don’t adjust Twinsen to fix collisions
info7 Enable flags: bit 0 - zone is enabled

Teleport zones can be enabled or disabled from script by using the SET_TELEPORT_ZONE opcode.

Camera zones

Parameter Description
param Zone scripting ID
info0 Camera x
info1 Camera y
info2 Camera z
info3 Camera alpha angle
info4 Camera beta angle
info5 Camera gamma angle
info6 View distance
info7 Enable flags: bit 0 - zone is enabled

Camera zones can be enabled or disabled from script by using the SET_CAMERA opcode.

22 Chapter 4. LBA2 engine

LBA classic engine doc

Sceneric zones

Parameter Description
param Zone scripting ID
info0 -unused-
info1 -unused-
info2 -unused-
info3 -unused-
info4 -unused-
info5 -unused-
info6 -unused-
info7 -unused-

Sceneric zones can be used from scripts by checking whether an actor is within them by using the ZONE and
ZONE_OBJ conditions.

Fragment zones

Parameter Description
param Zone scripting ID
info0 Fragment number
info1 -unused-
info2 Enable flags: bit 0 - zone is enabled
info3 -unused-
info4 -unused-
info5 -unused-
info6 -unused-
info7 -unused-

Fragment zones can be enabled or disabled from script by using the SET_FRAGMENT opcode.

Bonus zones

Parameter Description
param -unused-
info0 Bonus type
info1 Bonus quantity
info2 -unused-
info3 -unused-
info4 -unused-
info5 -unused-
info6 -unused-
info7 -unused-

Bonus zones are not scriptable.

4.4. Zones 23

LBA classic engine doc

Text zones

Parameter Description
param Message ID
info0 Text colour
info1 Associated camera zone (zero for none)
info2 Direction
info3 -unused-
info4 -unused-
info5 -unused-
info6 -unused-
info7 -unused-

Text zones are not scriptable.

The direction values seem appropriate for use as a bitmask but the LBA engine checks for equality, not a bit test, so
each text zone can only face a single direction. Double-sided signs would require two sign zones, one on each side.

Zone direction Description
1 Sign faces North
2 Sign faces South
4 Sign faces East
8 Sign faces West

Ladder zones

Parameter Description
param Zone scripting ID
info0 Enabled
info1 -unused-
info2 -unused-
info3 -unused-
info4 -unused-
info5 -unused-
info6 -unused-
info7 -unused-

Ladder zones can be enabled or disabled from script using the SET_LADDER_ZONE opcode. Their enabled state can
be queried using the LADDER condition.

24 Chapter 4. LBA2 engine

LBA classic engine doc

Conveyor zones

Parameter Description
param Zone scripting ID
info0 -unused-
info1 Enabled
info2 Direction
info3 -unused-
info4 -unused-
info5 -unused-
info6 -unused-
info7 -unused-

Conveyor zones can be enabled or disabled from script using the SET_CONVEYOR_ZONE opcode.

The direction values seem appropriate for use as a bitmask but the LBA engine checks for equality, not a bit test.

Zone direction Description
1 Conveyor travels North
2 Conveyor travels South
4 Conveyor travels East
8 Conveyor travels West

Spike zones

Parameter Description
param Zone scripting ID
info0 -unused-
info1 Damage
info2 Rearm time
info3 -unused-
info4 -unused-
info5 -unused-
info6 -unused-
info7 -unused-

The damage of spike zones can be controlled from script using the SET_SPIKE_ZONE opcode. Setting the damage
to zero will disable the spike zone; setting it to a non-zero value will enable it.

4.4. Zones 25

LBA classic engine doc

Rail zones

Parameter Description
param Zone scripting ID
info0 Enabled
info1 Switch set
info2 -unused-
info3 -unused-
info4 -unused-
info5 -unused-
info6 -unused-
info7 -unused-

26 Chapter 4. LBA2 engine

	General information
	Other VERY useful resources
	LBA1 engine
	Compile
	Prerequisites
	Getting prerequisites and sources
	DOSBox configuration
	Install tools
	Build
	Run

	Compile
	Prerequisites
	Getting prerequisites and sources
	Environment configuration
	Build
	Run
	Troubleshooting

	Audio

	LBA2 engine
	Compile
	Audio
	Scripts
	Notation
	Life scripts
	Life script operations
	Life script conditions

	Move scripts

	Zones
	Zone format
	Teleport zones
	Camera zones
	Sceneric zones
	Fragment zones
	Bonus zones
	Text zones
	Ladder zones
	Conveyor zones
	Spike zones
	Rail zones

