

    
      
          
            
  
Welcome to Little Big Adventure Classic engines documentation!

This documentation aim to explain how the Little Big Adventure engines work.

Please Little Big Adventure game assets (art, models, textures, audio, etc.) are not open-source and therefore aren’t redistributable.


General information

This documentation is hosted by Read the docs [https://docs.readthedocs.io/en/stable/index.html] and built with Sphinx [https://www.sphinx-doc.org/en/master/index.html]. You can pull the project and edit locally.

The files from the engines are encoded in OEM-852 or Code page 852 : https://en.wikipedia.org/wiki/Code_page_852



Other VERY useful resources

LBA Community Wiki : http://lbafileinfo.kaziq.net/index.php/Main_Page




LBA1 engine






LBA2 engine







            

          

      

      

    

  

    
      
          
            
  
Compile


Prerequisites


	DOSBox [https://www.dosbox.com/] - DOS emulator which we will
use to compile the game inside.


	4DOS [https://www.4dos.info/v4dos.htm#751] - Command line
interpreter, which supports the copy command with binary
inputs and output.


	Watcom 10 compiler - For compiling C sources and running MAKEFILEs


	MASM (Microsoft Macro Assembler) 6.0 - For compiling ASM sources






Getting prerequisites and sources

DOSBox and 4DOS are freely available. For getting Watcom 10 and MASM
6.0, you need to search the internet. Note that we did not manage to
build the game with Open Watcom. Also, for some reason the MASM version
6.11 compiler did run very slowly in the DOSBox, so it was basically
unusable. We had to use the version 6.0.

All directories and files will placed in the ~/lba-hacking directory
on the host machine. Feel free to change this path, but then adjust the
DOSBox configuration below correspondingly. This directory will be
mounted to C: in DOSBox.


	Extract 4DOS into 4dos.


	Extract Watcom and MASM installers into install. These will be
needed to be installed.


	Clone https://github.com/2point21/lba1-classic-community into
lba.




The dir structure at this point should like something like this:

~/lba-hacking
├── 4dos
├── install
│   ├── masm
│   └── watcom
└── lba







DOSBox configuration

Change the autoexec section of you DOSBox configuration like below.
The configuration path of DOSBox is usually shown when you start it.

[autoexec]
mount C ~/lba-hacking

PATH c:\watcom\binw;c:\masm\bin;%PATH%
set INCLUDE=c:\watcom\h;c:\lba\lib386
set WATCOM=c:\watcom
set EDPATH=c:\watcom\eddat
set WIPFC=c:\watcom\wipfc

C:
C:\4DOS\4DOS.COM







Install tools


	Launch DOSBox (e.g. with dosbox).


	On the first run, 4DOS will prompt some configuration values.


	Install Watcom by running C:\INSTALL\WATCOM\SETUP.EXE and
following the instructions. Leave the default installation path
C:\WATCOM. The step which proposes to modify AUTOEXEC.EXE and
CONFIG.SYS can be skipped.


	Install MASM by running C:\INSTALL\MASM\DISK1\SETUP.EXE. Leave the
default installation paths C:\MASM\BINB, etc…




Check the installation by typing in:


	wmake: this should show the installed Watcom make version; in my
case 10.5


	wcc386: this should show the help of the Watcom C compiler; in my
case 10.5


	ml: this should show the version of the Microsoft Macro
Assembler; in my case 6.00




Now we are ready to build the game.



Build

Run inside the DOSBox

cd C:\LBA\LIB386

cd LIB_3D
wmake

cd ..\LIB_MENU
wmake

cd ..\LIB_MIDI
wmake

cd ..\LIB_MIX
wmake

cd ..\LIB_SAMP
wmake

cd ..\LIB_SVGA
wmake

cd ..\LIB_SYS
wmake

cd ..\..\SOURCES
wmake
link





The last command will link the LBA0.exe.



Run

To run the game, you will need some assets of the original game.


	copy HQR files,


	copy M_SB16.DLL, S3.DLL, and W_SB16.DLL,


	copy LBA.CFG,




into the directory containing LBA0.exe, in our case
C:\LBA\SOURCES.

Run

dos4gw LBA0.exe





Enjoy!





            

          

      

      

    

  

    
      
          
            
  
Compile


Prerequisites


	Open Watcom v2 [https://github.com/open-watcom/open-watcom-v2] - C/C++ Compiler capable of building DOS applications


	MASM (Microsoft Macro Assembler) - For compiling assembler files






Getting prerequisites and sources

The prerequisites are freely available, MASM as part of Visual Studio Community [https://visualstudio.microsoft.com/pt-br/vs/community/] (Tested with versions 2019 and 2022). Both can be installed at their default locations.

For Open Watcom, be sure to select full instalation and to modify environment variables later.

To get the sources, clone the lba1-classic-community repository [https://github.com/2point21/lba1-classic-community] into some folder.

git clone https://github.com/2point21/lba1-classic-community.git







Environment configuration

Create or edit the file SETENV.BAT on the lba1-classic-community repository folder, with the following content, making sure to double check if the Microsoft Visual Studio Community and Open Watcom folders are the same on your system.

@echo off
echo LBA Build Environment
call "C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvarsamd64_x86.bat"
call C:\WATCOM\owsetenv.bat
SET LIB386_PATH=%CD%\LIB386
SET INCLUDE=%LIB386_PATH%;%INCLUDE%







Build

In a Windows command prompt inside the lba1-classic-community repository folder, run

cd LIB386\LIB_3D
wmake

cd ..\LIB_CD
wmake

cd ..\LIB_MENU
wmake

cd ..\LIB_MIDI
wmake

cd ..\LIB_MIX
wmake

cd ..\LIB_SAMP
wmake

cd ..\LIB_SVGA
wmake

cd ..\LIB_SYS
wmake

cd ..\..\SOURCES
wmake
link





The expected output is the LBA0.exe executable inside the SOURCES folder.



Run

To run the game, you will need the original assets of the game and the LBA0.exe generated executable.


	copy game assets,


	copy LBA0.exe,




into the same directory. The compiled file was verified to run with DOSBox Staging [https://dosbox-staging.github.io/].



Troubleshooting

Q: When I execute LBA0.exe, an error appears: “SVGA card BIOS does not support VESA extensions. Please refer to your SVGA card documentation for installing VESA driver”. What can I do?

A: To solve this, change the SvgaDriver configuration in LBA.CFG to:

SvgaDriver: TSENG.DLL





Where TSENG.DLL is set instead of S3.DLL. If the issue persists, other drivers may be used (check LBA.CFG to see which are available in the game assets). As of date, this was tested using Tseng.

Additionally, change the type of machine DOSBox tries to emulate. In the DOSBox configuration file, set the machine value to:

[dosbox]
machine=svga_et4000





This will change the emulation of DOSBox to Tseng Labs ET4000. If you choose to use another SVGA driver, change the machine value accordingly (check the DOSBox configuration file to see the available options).





            

          

      

      

    

  

    
      
          
            
  
Audio




            

          

      

      

    

  

    
      
          
            
  
Compile




            

          

      

      

    

  

    
      
          
            
  
Audio




            

          

      

      

    

  

    
      
          
            
  
Scripts


Notation

Opcode fields:


	char[]
	Embedded C-style (NUL-terminated) string.



	cond
	One or more opcodes specifying a condition.



	i16
	16-bit signed value (little-endian) used for opcode arguments.



	int_or_string
	Any of char[], i8, u8, i16. This is used in conditions, where the type is determined by the type of the
value that is being compared.



	pc16
	16-bit signed offset (little-endian) used as a jump destination, absolute.



	pcrel16
	16-bit signed offset (little-endian) used as a jump destination, relative to the current opcode.



	u8
	8-bit unsigned value used for opcode arguments.



	u16
	16-bit unsigned value (little-endian) used for opcode arguments.



	u32
	32-bit unsigned value (little-endian) used for opcode arguments.







Life scripts

Life scripts are broken down into “behaviours” (“comportement” in the source). Each time an actor’s life script is
executed, it executes the same behaviour as when it last exited (or the first behaviour if it is the first time
running). This way, each behaviour acts as a mini AI loop for the actor, with each tailored to a particular situation
(e.g. idling, with Twinsen nearby, in combat, interacting with an object, etc).


Life script operations

In the following table, you can see that there are a number of opcodes that have the same behaviour but different names.
This is useful when compiling or decompiling the scripts as there is a 1:1 correspondence between the written script and
the compiled bytecode.








	Opcode (hex)

	Name/syntax

	Description





	0x00

	END

	Marks the end of this script.



	0x01

	NOP

	Does nothing.



	0x02

	SNIF cond pcrel16

	Jumps always, then replaced with SWIF opcode if condition was true.



	0x03

	OFFSET pcrel16

	Jumps always.



	0x04

	NEVERIF pcrel16

	Jumps always. Used as a replacement for a ONEIF opcode.



	0x0A

	PALETTE u8:palette

	Switches the game’s palette.



	0x0B

	RETURN

	Ends the current behaviour.



	0x0C

	IF cond pcrel16

	Jumps if the condition is false.



	0x0D

	SWIF cond pcrel16

	Jumps if the condition is false and then replaced with SNIF.



	0x0E

	ONEIF cond pcrel16

	Jumps if the condition is false otherwise replaced with NEVERIF.



	0x0F

	ELSE pcrel16

	Jumps always.



	0x10

	ENDIF

	Does nothing.



	0x11

	BODY u8:model

	Changes the model of the actor.



	0x12

	BODY_OBJ u8:actor u8:model

	Changes the modem of another actor.



	0x13

	ANIM u16:animation

	Changes the animation of the actor.



	0x14

	ANIM_OBJ u8:actor u16:anim

	Changes the animation of another actor.



	0x15

	SET_CAMERA u8:zone u8:flag

	Enables or disables a camera zone.



	0x16

	CAMERA_CENTRE u8:angle_adjust

	Recentres camera.



	0x17

	SET_TRACK i16:track

	Changes this actor’s move script track.



	0x18

	SET_TRACK_OBJ u8:actor i16:track

	Changes another actor’s move script track.



	0x19

	MESSAGE i16:index

	Says a line of dialogue.



	0x1A

	CAN_FALL u8:fall_type

	Sets whether actor can fall.



	0x1B

	SET_DIRMODE u8:mode

	Sets this actor’s movement mode.



	0x1C

	SET_DIRMODE_OBJ u8:actor u8:mode

	Sets another actor’s movement mode.



	0x1D

	CAMERA_FOLLOW u8:actor

	Make camera follow an actor.



	0x1E

	SET_HERO_STANCE u8:mode

	Set Twinsen’s stance.



	0x1F

	SET_VAR_SCENE u8:var u8:value

	Sets the value of a scene variable.



	0x20

	BEHAVIOUR u8:id

	Begins a life script behaviour block.



	0x21

	SET_BEHAVIOUR pc16:offset

	Jumps to a new behaviour block.



	0x22

	SET_BEHAVIOR_OBJ u8:actor pc16:off

	Changes the active behaviour of another actor.



	0x23

	END_BEHAVIOUR

	Marks the end of a life script behaviour block.



	0x24

	SET_VAR_GAME u8:var i16:value

	Sets the value of a game variable.



	0x25

	KILL_OBJ u8:actor

	Kills the given actor.



	0x26

	SUICIDE

	Kills this actor.



	0x27

	USE_KEY

	Subtracts one key from the inventory.



	0x28

	SUB_MONEY i16:quantity

	Takes money from Twinsen.



	0x29

	END_LIFE

	Ends life script execution for this actor.



	0x2A

	SAVE_CURRENT_TRACK

	Saves the move script track to a hidden variable.



	0x2B

	RESTORE_LAST_TRACK

	Restores the move script track from the hidden variable.



	0x2C

	MESSAGE_OBJ u8:actor i16:message

	Another actor says a line of dialogue.



	0x2D

	INC_CHAPTER

	Increment the chapter number game variable.



	0x2E

	FOUND_OBJECT u8:object

	Display the “found object” overlay.



	0x2F

	SET_DOOR_LEFT i16:distance

	Slides this door to the left.



	0x30

	SET_DOOR_RIGHT i16:distance

	Slides this door to the right.



	0x31

	SET_DOOR_UP i16:distance

	Slides this door upwards.



	0x32

	SET_DOOR_DOWN i16:distance

	Slides this door downwards.



	0x33

	GIVE_BONUS u8:remove

	Gives this actor’s bonus items.



	0x34

	CHANGE_SCENE u8:scene

	Move to a different scene.



	0x35

	OBJ_COL u8:enabled

	Enables or disables object/actor collisions for this actor.



	0x36

	BRICK_COL u8:collision_type

	Enables or disables terrain collisions for this actor.



	0x37

	OR_IF cond pcrel16

	Jumps if condition is true.



	0x38

	INVISIBLE u8:invisible

	Makes the actor invisible or visible again.



	0x39

	SHADOW_OBJ u8:actor u8:enabled

	Enables or disables the shadow for another actor.



	0x3A

	POS_POINT u8:point

	Moves this actor to a point.



	0x3B

	SET_MAGIC_LEVEL u8:level

	Sets Twinsen’s magic level.



	0x3C

	SUB_MANA u8:quantity

	Drains some of Twinsen’s mana.



	0x3D

	SET_HEALTH_OBJ u8:actor u8:value

	Sets the health of an actor.



	0x3E

	SUB_HEALTH_OBJ u8:actor u8:points

	Subtracts health from another actor.



	0x3F

	HIT u8:victim u8:damage

	Deals damage to another actor, caused by this actor.



	0x40

	PLAY_VIDEO char[]:name

	Plays the named cutscene video.



	0x41

	LIGHTNING u8:duration

	Display a lightning flash.



	0x42

	INC_CLOVER_BOX

	Gives Twinsen another clover box.



	0x43

	SET_USED_INVENTORY u8:item

	Use inventory item.



	0x44

	ADD_CHOICE i16:message

	Adds choice to the next ask.



	0x45

	ASK_CHOICE i16:message

	Says a line of dialogue and offers choices.



	0x46

	INIT_BUGGY u8:flag

	Sets up Twinsen’s car.



	0x47

	MEMO_SLATE u8:picture

	Adds a picture to the memo slate.



	0x48

	SET_HOLO_POS u8:marker

	Adds a marker to the holomap.



	0x49

	CLR_HOLO_POS u8:marker

	Removes a marker from the holomap.



	0x4A

	ADD_FUEL u8:ignored

	Does nothing (LBA1 leftover).



	0x4B

	SUB_FUEL u8:ignored

	Does nothing (LBA1 leftover).



	0x4C

	SET_FRAGMENT u8:zone u8:enable

	Enables or disables a terrain chunk.



	0x4D

	SET_TELEPORT_ZONE u8:zone u8:flag

	Enables or disables a teleport zone.



	0x4E

	MESSAGE_ZOE i16:message

	Says a line using Zoe’s voice.



	0x4F

	FULL_POINT

	Restores Twinsen’s health, mana and healing horn.



	0x50

	BETA i16:angle

	Rotates actor.



	0x51

	FADE_TO_PAL u8:palette

	Fades to the given palette.



	0x52

	ACTION

	Triggers Twinsen’s action (like pressing the Z key).



	0x53

	SET_FRAME u8:frame

	Changes the frame number of this actor’s animation.



	0x54

	SET_SPRITE u8:sprite

	Changes the sprite used for this actor.



	0x55

	SET_FRAME_3DS u8:frame

	Changes the frame number of this actor’s animated sprite.



	0x56

	IMPACT_OBJ u8:actor i16:anim i16:yoffset

	Plays an impact animation above an actor.



	0x57

	IMPACT_POINT u8:point i16:anim

	Plays an impact animation at a point.



	0x58

	ADD_MESSAGE i16:message

	Same as MESSAGE.



	0x59

	BALLOON u8:enable

	Enables or disables use of speech balloons.



	0x5A

	NO_HIT u8:enable

	Enables or disables ignoring hits/damage to this actor.



	0x5B

	ASK_CHOICE u8:actor i16:message

	Another actor says a line of dialogue and offers choices.



	0x5C

	CINEMA_MODE u8:enable

	Enables or disables cutscene mode.



	0x5D

	SAVE_HERO

	Saves Twinsen’s stance to a hidden variable.



	0x5E

	RESTORE_HERO

	Restores Twinsen’s stance from a hidden variable.



	0x5F

	ANIM_SET u16:anim

	Sets this actor’s animation.



	0x60

	RAIN u8:duration

	Makes it rain.



	0x61

	GAME_OVER

	Kills Twinsen and ends the game.



	0x62

	THE_END

	Ends the game and shows the credits.



	0x63

	SET_CONVEYOR_ZONE u8:zone u8:flag

	Enables or disables a conveyor zone.



	0x64

	PLAY_MUSIC u8:track

	Plays a music track.



	0x65

	SAVE_TRACK_TO_GAME_VAR u8:var

	Saves this actor’s move script track to a game variable.



	0x66

	SET_TRACK_FROM_GAME_VAR u8:var

	Sets this actor’s move script track from a game variable.



	0x67

	ANIM_TEXTURE u8:enable

	Enable or disable texture animation.



	0x68

	ADD_MESSAGE_OBJ u8:actor i16:msg

	Same as MESSAGE_OBJ.



	0x69

	BRUTAL_EXIT

	Ends the game without displaying the credits.



	0x6A

	COMMENT

	Does nothing.



	0x6B

	SET_LADDER_ZONE u8:zone u8:enable

	Enables or disables a ladder zone.



	0x6C

	SET_ARMOUR u8:armour

	Sets this actor’s armour value.



	0x6D

	SET_ARMOR_OBJ u8:actor u8:obj

	Sets the armour value of another actor.



	0x6E

	ADD_HEALTH_OBJ u8:actor u8:life

	Adds health to another actor.



	0x6F

	STATE_INVENTORY u8:item u8:state

	Changes the state/variant of an inventory object.



	0x70

	AND_IF cond pcrel16

	Jumps if condition is false.



	0x71

	SWITCH

	Begins a switch statement.



	0x72

	OR_CASE pcrel16 cond

	Jumps if condition fails.



	0x73

	CASE pcrel16 cond

	Jumps if condition succeeds.



	0x74

	DEFAULT

	Does nothing.



	0x75

	BREAK pcrel16

	Jumps to offset.



	0x76

	END_SWITCH

	Does nothing.



	0x77

	SET_SPIKE_ZONE u8:zone u8:damage

	Enables or disables a spike/trap zone.



	0x78

	SAVE_BEHAVIOUR

	Saves this actor’s behaviour index to a hidden variable.



	0x79

	RESTORE_BEHAVIOUR

	Restores this actor’s behaviour from the hidden variable.



	0x7A

	SAMPLE i16:sample

	Plays a sound sample coming from this actor.



	0x7B

	SAMPLE_RND i16:sample

	Like SAMPLE but randomly alters the sample’s frequency.



	0x7C

	SAMPLE_ALWAYS i16:sample

	Like SAMPLE but plays the sample continuously.



	0x7D

	SAMPLE_STOP i16:sample

	Stops the given sample if it is playing from this actor.



	0x7E

	REPEAT_SAMPLE i16:sample u8:count

	Like SAMPLE but plays the given number of repeats.



	0x7F

	BACKGROUND u8:flag

	Sets or clears the “background” (don’t redraw) flag for this actor.



	0x80

	ADD_VAR_GAME u8:var i16:value

	Adds a value to a game variable.



	0x81

	SUB_VAR_GAME u8:var i16:value

	Subtracts a value from a game variable.



	0x82

	ADD_VAR_SCENE u8:var u8:value

	Adds a value to a scene variable.



	0x83

	SUB_VAR_SCENE u8:var u8:value

	Subtracts a value from a scene variable.



	0x84

	NOP

	Does nothing.



	0x85

	SET_RAIL_ZONE u8:zone u8:enable

	Enables or disables a rail zone.



	0x86

	INVERSE_BETA

	Rotates the actor to face the opposite direction.



	0x87

	NO_BODY

	Hides the model for this actor.



	0x88

	ADD_MONEY i16:quantity

	Gives money to Twinsen.



	0x89

	SAVE_CURRENT_TRACK_OBJ u8:actor

	Saves the move script track of another actor to a hidden variable.



	0x8A

	RESTORE_LAST_TRACK_OBJ u8:actor

	Restores the move script track of another actor from the hidden variable.



	0x8B

	SAVE_BEHAVIOUR_OBJ u8:actor

	Saves the life script behaviour of another actor to a hidden variable.



	0x8C

	RESTORE_BEHAVIOUR_OBJ u8:actor

	Restores the life script behaviour of another actor from the hidden variable.



	0x8D

	SPY

	Does nothing.



	0x8E

	DEBUG

	Does nothing.



	0x8F

	DEBUG_OBJ

	Does nothing.



	0x90

	POPCORN

	Does nothing.



	0x91

	FLOW_POINT u8:point u8:flow

	Displays a particle animation at a point.



	0x92

	FLOW_OBJ u8:actor u8:flow

	Displays a particle animation on an actor.



	0x93

	SET_ANIM_DIAL u16:anim

	Sets the animation to use when talking.



	0x94

	PCX u8:image

	Displays a still image.



	0x95

	END_MESSAGE

	Does nothing.



	0x96

	END_MESSAGE_OBJ u8:ignored

	Does nothing.



	0x97

	PARM_SAMPLE i16:freq u8:vol i16:fbase

	Configures audio sample parameters.



	0x98

	NEW_SAMPLE i16:sample i16:f u8:v i16:fb

	Plays an audio sample on this actor with custom parameters.



	0x99

	POS_OBJ_AROUND u8:move_actor u8:dest

	Positions an actor on or near another actor.



	0x9A

	PCX_MESS_OBJ u8:img u8:fx u8:act i16:msg

	Show a message on a still image background.






Fall types (undocumented values are invalid):


	actor cannot fall


	actor can fall


	actor can fall; stops any fall in progress




Movement modes (undocumented values are invalid):


	no movement


	controlled by player


	follow actor (opcode has extra param: uint8: actor to follow)


	invalid


	invalid


	invalid


	same XZ position as other actor


	MecaPenguin movement


	rail cart movement


	circle a point (opcode has extra param: uint8: point index)


	circle a point while facing it (opcode has extra param: uint8: point index)


	same XZ position and angle as other actor


	car movement


	car movement under player control




Hero stances (undocumented values are invalid):


	normal


	athletic


	aggressive


	discreet


	protopack


	walking with Zoe


	healing horn


	spacesuit normal (interior)


	jetpack


	spacesuit athletic (interior)


	spacesuit normal (exterior)


	spacesuit athletic (exterior)


	car


	skeleton




Collision types (undocumented values are invalid):


	can move through terrain bricks


	blocked by terrain bricks


	blocked by terrain bricks but can crawl through narrow passages




Buggy init types (undocumented values are invalid):


	no init


	init if needed


	force init




Effects for PCX_MESS_OBJ (undocumented values are invalid):


	no effect


	venetian blinds effect






Life script conditions








	Opcode (hex)

	Name/syntax

	Description





	0x00

	COL -> i8

	Actor this actor collided with (or -1 if none).



	0x01

	COL_OBJ u8:actor -> i8

	Actor another actor collided with (or -1 if none).



	0x02

	DISTANCE u8:actor -> i16

	2D distance to another actor.



	0x03

	ZONE -> i8

	Index of sceneric zone this actor is within (or -1 if none).



	0x04

	ZONE_OBJ u8:actor -> i8

	Index of sceneric zone another actor is within (or -1 if none).



	0x05

	BODY -> i8

	Model used for this actor.



	0x06

	BODY_OBJ u8:actor -> i8

	Model used by another actor.



	0x07

	ANIM -> i16

	Animation used by this actor.



	0x08

	ANIM_OBJ u8:actor -> i16

	Animation used by another actor.



	0x09

	TRACK -> u8

	Life script track active on this actor.



	0x0A

	TRACK_OBJ u8:actor -> u8

	Life script track active on another actor.



	0x0B

	VAR_SCENE u8:var -> u8

	Value of a scene variable.



	0x0C

	CONE_VIEW u8:actor -> i16

	Distance to another actor, if they are within a 90-degree view cone.



	0x0D

	HIT_BY -> i8

	Actor that last hit this actor.



	0x0E

	ACTION -> i8

	Action key was pressed.



	0x0F

	VAR_GAME u8:var -> i16

	Value of a game variable.



	0x10

	LIFE_POINT -> i16

	Health of this actor.



	0x11

	LIFE_POINT_OBJ u8:actor -> i16

	Health of another actor.



	0x12

	KEYS -> i8

	Number of keys.



	0x13

	MONEY -> i16

	Money.



	0x14

	HERO_STANCE -> i8

	Twinsen’s stance.



	0x15

	CHAPTER -> i8

	Game chapter.



	0x16

	DISTANCE_3D u8:actor -> i16

	3D distance to another actor.



	0x17

	MAGIC_LEVEL -> i8

	Magic level.



	0x18

	MANA -> i8

	Twinsen’s mana points.



	0x19

	ITEM_USED u8:item -> i8

	Item being used.



	0x1A

	CHOICE -> i16

	Choice made in last dialogue.



	0x1B

	FUEL -> i16

	Returns junk value; do not used (lba1 leftover).



	0x1C

	CARRY_BY -> i8

	Actor carrying this actor.



	0x1D

	CDROM -> i8

	Whether this is the CDROM build or floppy build.



	0x1E

	LADDER u8:zone -> i8

	Whether a ladder zone is enabled.



	0x1F

	RND u8:max -> u8

	Random number.



	0x20

	RAIL u8:zone -> i8

	Whether a rail zone is enabled.



	0x21

	BETA -> i16

	Current angle of this actor.



	0x22

	BETA_OBJ u8:actor -> i16

	Current angle of another actor.



	0x23

	CARRY_OBJ_BY u8:actor -> i8

	Actor carrying another actor.



	0x24

	ANGLE u8:actor -> i16

	Angle from this actor to another actor.



	0x25

	DISTANCE_MESSAGE u8:actor -> i16

	Distance from another actor, if within an angle suitable for conversation.



	0x26

	HIT_OBJ_BY u8:actor -> i8

	Actor that last hit another actor.



	0x27

	REAL_ANGLE u8:actor -> i16

	Angle from this actor to another, clamped.



	0x28

	DEMO -> i8

	Whether this is the demo build.



	0x29

	COL_BRICK -> i8

	Whether this actor collides with scenery.



	0x2A

	COL_BRICK_OBJ u8:actor -> i8

	Whether another actor collides with scenery.



	0x2B

	PROCESSOR -> i8

	Whether running on an old processor.



	0x2C

	OBJECT_DISPLAYED u8:actor -> i8

	Whether this actor was drawn to the screen.



	0x2D

	ANGLE_OBJ u8:actor -> i16

	Angle from another actor to this actor.













	Opcode (hex)

	Name/syntax

	Description





	0x00

	EQUAL int_or_string

	Whether the value is equal to the constant.



	0x01

	GREATER int_or_string

	Whether the value is greater than the constant. Not valid for strings.



	0x02

	LESS int_or_string

	Whether the value is less than the constant. Not valid for strings.



	0x03

	GREATER_OR_EQUAL int_or_string

	Whether the value is not less than the constant. Not valid for strings.



	0x04

	LESS_OR_EQUAL int_or_string

	Whether the value is not greater than the constant. Not valid for strings.



	0x05

	NOT_EQUAL int_or_string

	Whether the value is not equal to the constant.









Move scripts








	Opcode (hex)

	Name/syntax

	Description





	0x00

	END

	Ends this move script.



	0x01

	NOP

	Does nothing.



	0x02

	BODY u8:model

	Sets this actor’s model.



	0x03

	ANIM u16:anim

	Sets this actor’s current animation.



	0x04

	GOTO_POINT u8:point

	Actor rotates to face the given point and waits until its animation takes it there.



	0x05

	WAIT_ANIM

	Waits for the current animation to end.



	0x06

	LOOP u8:init u8:remaining pcrel16

	Decrements remaining, jumps if non-zero, sets remaining to init if zero.



	0x07

	ANGLE i16:angle

	Actor rotates to the given angle and waits until the rotation completes.



	0x08

	POS_POINT u8:point

	Instantly teleports the actor to a point.



	0x09

	MOVE_TRACK u8:id

	Begins a track block within this move script.



	0x0A

	GOTO pcrel16

	Jumps to another part of the move script.



	0x0B

	STOP

	Stops executing this move script.



	0x0C

	GOTO_POINT_BACKWARDS u8:point

	Actor rotates to face away from the given point and waits until its animation takes it there.



	0x0D

	WAIT_NUM_ANIM u8:count u8:zero

	Waits for the actor’s animation to have played a number of times.



	0x0E

	SAMPLE i16:sample

	Plays a sound sample.



	0x0F

	GOTO_POINT_3D u8:point

	Actor moves to the given point, if it’s a 3D sprite.



	0x10

	SPEED i16:speed

	Sets the rotation speed of the actor.



	0x11

	BACKGROUND u8:enabled

	Enables or disables the “background” flag for this actor.



	0x12

	WAIT_NUM_SECOND u8:count u32:zero

	Wait for the number of seconds.



	0x13

	NO_BODY

	Sets this actor to have no model.



	0x14

	BETA i16:angle

	Rotates this actor instantly.



	0x15

	OPEN_LEFT i16:distance

	Door slides to the left.



	0x16

	OPEN_RIGHT i16:distance

	Door slides to the right.



	0x17

	OPEN_UP i16:distance

	Door slides upwards.



	0x18

	OPEN_DOWN i16:distance

	Door slides downwards.



	0x19

	CLOSE

	Restore door’s original position.



	0x1A

	WAIT_DOOR

	Wait until door finishes moving.



	0x1B

	SAMPLE_RND i16:sample

	Plays a sound sample with a random frequency adjustment.



	0x1C

	SAMPLE_ALWAYS i16:sample

	Plays a sound sample forever.



	0x1D

	SAMPLE_STOP i16:sample

	Stops a particular sound sample.



	0x1E

	PLAY_VIDEO char[]:name

	Plays a cutscene video.



	0x1F

	REPEAT_SAMPLE i16:count

	Sets the number of repeats for SIMPLE_SAMPLE.



	0x20

	SIMPLE_SAMPLE i16:sample

	Plays a sample according to REPEAT_SAMPLE and resets the repeat count to 1.



	0x21

	FACE_HERO i16:negative_one

	Actor rotates to face Twinsen and waits until the rotation completes.



	0x22

	ANGLE_RND i16:angle i16:negative_one

	Actor rotates to a random angle and waits until the rotation completes.



	0x23

	COMMENT

	Does nothing.



	0x24

	WAIT_NUM_DECISECONDS u8:count u32:zero

	Waits for a number of deciseconds (tenths of a second).



	0x25

	DO

	Does nothing.



	0x26

	SPRITE i16:sprite

	Sets this actor’s sprite.



	0x27

	WAIT_NUM_SECOND_RND u8:max u32:zero

	Waits for a random number of seconds, up to a maximum.



	0x28

	AFF_TIMER

	Does nothing.



	0x29

	SET_FRAME u8:frame

	Sets the actor’s animation frame.



	0x2A

	SET_FRAME_3DS u8:frame

	Sets the actor’s 3D sprite animation frame.



	0x2B

	SET_START_3DS u8:frame

	Sets the start frame of the actor’s 3D sprite animation.



	0x2C

	SET_END_3DS u8:frame

	Sets the end frame of the actor’s 3D sprite animation.



	0x2D

	START_ANIM_3DS u8:fps

	Starts the actor’s 3D sprite animation.



	0x2E

	STOP_ANIM_3DS

	Stops the actor’s 3D sprite animation.



	0x2F

	WAIT_ANIM_3DS

	Waits until the actor’s 3D sprite animation ends or is stopped.



	0x30

	WAIT_FRAME_3DS u8:frame

	Waits until the actor’s 3D sprite animation reaches the given frame.



	0x31

	WAIT_NUM_DECISECONDS_RND u8:max u32:0

	Waits for a random number of deciseconds, up to a maximum.



	0x32

	INTERVAL int16:interval

	Sets the interval between sample repeats.



	0x33

	FREQUENCY i16:frequency

	Sets the frequency for sample playback.



	0x34

	VOLUME u8:volume

	Sets the volume for sample playback.










            

          

      

      

    

  

    
      
          
            
  
Zones

Zones are used to demarcate 3D regions of space within scenes. There are various types of zones, each of which have
different behaviours when Twinsen enters or interacts with them:


	teleport zones transport Twinsen to a different scene when entered


	camera zones change the camera position and angle when entered


	sceneric zones define areas of the scene used for “is actor in zone?” queries in scripts


	fragment zones define an area of the scene’s terrain that can be dynamically shown or hidden


	bonus zones dispense items when interacted with


	text zones are used to implement signs and say dialogue when interacted with


	ladder zones provide vertical movement


	conveyor zones move actors which stand within them


	spike zones deal damaged when entered (floor spikes, traps, etc)


	rail zones are used to control minecart movement




All zones are cuboid in shape.


Zone format

Zones are stored as part of the scene containing the zone:


zone data layout

{
    i32         x0
    i32         y0
    i32         z0
    i32         x1
    i32         y1
    i32         z1
    i32         info0
    i32         info1
    i32         info2
    i32         info3
    i32         info4
    i32         info5
    i32         info6
    i32         info7
    i16         type
    i16         value
}








	x0, y0, z0: first corner defining the zone cuboid


	x1, y1, z1: opposite corner defining the zone cuboid


	info0..7: zone parameters; interpretation depends on the zone type


	type: the type of zone


	value: zone parameter; interpretation depends on the zone type










	Zone type

	Name





	0

	Teleport



	1

	Camera



	2

	Sceneric



	3

	Fragment



	4

	Bonus



	5

	Text



	6

	Ladder



	7

	Conveyor



	8

	Spike



	9

	Rail






The documentation below for each of the zone types describes how the flags are interpreted, as loaded from the scene.
The LBA engine modifies some of these values at run-time in order to avoid allocating additional memory; these run-time
uses and modifications are not documented here.


Teleport zones







	Parameter

	Description





	param

	Destination scene



	info0

	Destination x



	info1

	Destination y



	info2

	Destination z



	info3

	Destination angle



	info4

	Zone scripting ID



	info5

	Door flags: bit 0 - for exterior scenes, don’t activate zone until Twinsen collides with the door



	info6

	Collision flags: bit 0 - don’t adjust Twinsen to fix collisions



	info7

	Enable flags: bit 0 - zone is enabled






Teleport zones can be enabled or disabled from script by using the SET_TELEPORT_ZONE opcode.



Camera zones







	Parameter

	Description





	param

	Zone scripting ID



	info0

	Camera x



	info1

	Camera y



	info2

	Camera z



	info3

	Camera alpha angle



	info4

	Camera beta angle



	info5

	Camera gamma angle



	info6

	View distance



	info7

	Enable flags: bit 0 - zone is enabled






Camera zones can be enabled or disabled from script by using the SET_CAMERA opcode.



Sceneric zones







	Parameter

	Description





	param

	Zone scripting ID



	info0

	-unused-



	info1

	-unused-



	info2

	-unused-



	info3

	-unused-



	info4

	-unused-



	info5

	-unused-



	info6

	-unused-



	info7

	-unused-






Sceneric zones can be used from scripts by checking whether an actor is within them by using the ZONE and ZONE_OBJ
conditions.



Fragment zones







	Parameter

	Description





	param

	Zone scripting ID



	info0

	Fragment number



	info1

	-unused-



	info2

	Enable flags: bit 0 - zone is enabled



	info3

	-unused-



	info4

	-unused-



	info5

	-unused-



	info6

	-unused-



	info7

	-unused-






Fragment zones can be enabled or disabled from script by using the SET_FRAGMENT opcode.



Bonus zones







	Parameter

	Description





	param

	-unused-



	info0

	Bonus type



	info1

	Bonus quantity



	info2

	-unused-



	info3

	-unused-



	info4

	-unused-



	info5

	-unused-



	info6

	-unused-



	info7

	-unused-






Bonus zones are not scriptable.



Text zones







	Parameter

	Description





	param

	Message ID



	info0

	Text colour



	info1

	Associated camera zone (zero for none)



	info2

	Direction



	info3

	-unused-



	info4

	-unused-



	info5

	-unused-



	info6

	-unused-



	info7

	-unused-






Text zones are not scriptable.

The direction values seem appropriate for use as a bitmask but the LBA engine checks for equality, not a bit test, so
each text zone can only face a single direction. Double-sided signs would require two sign zones, one on each side.







	Zone direction

	Description





	1

	Sign faces North



	2

	Sign faces South



	4

	Sign faces East



	8

	Sign faces West








Ladder zones







	Parameter

	Description





	param

	Zone scripting ID



	info0

	Enabled



	info1

	-unused-



	info2

	-unused-



	info3

	-unused-



	info4

	-unused-



	info5

	-unused-



	info6

	-unused-



	info7

	-unused-






Ladder zones can be enabled or disabled from script using the SET_LADDER_ZONE opcode. Their enabled state can be queried
using the LADDER condition.



Conveyor zones







	Parameter

	Description





	param

	Zone scripting ID



	info0

	-unused-



	info1

	Enabled



	info2

	Direction



	info3

	-unused-



	info4

	-unused-



	info5

	-unused-



	info6

	-unused-



	info7

	-unused-






Conveyor zones can be enabled or disabled from script using the SET_CONVEYOR_ZONE opcode.

The direction values seem appropriate for use as a bitmask but the LBA engine checks for equality, not a bit test.







	Zone direction

	Description





	1

	Conveyor travels North



	2

	Conveyor travels South



	4

	Conveyor travels East



	8

	Conveyor travels West








Spike zones







	Parameter

	Description





	param

	Zone scripting ID



	info0

	-unused-



	info1

	Damage



	info2

	Rearm time



	info3

	-unused-



	info4

	-unused-



	info5

	-unused-



	info6

	-unused-



	info7

	-unused-






The damage of spike zones can be controlled from script using the SET_SPIKE_ZONE opcode. Setting the damage to zero will
disable the spike zone; setting it to a non-zero value will enable it.



Rail zones







	Parameter

	Description





	param

	Zone scripting ID



	info0

	Enabled



	info1

	Switch set



	info2

	-unused-



	info3

	-unused-



	info4

	-unused-



	info5

	-unused-



	info6

	-unused-



	info7

	-unused-











            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Little Big Adventure Classic engines documentation!
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





